Screen-printed back-to-back electroanalytical sensors: heavy metal ion sensing.
نویسندگان
چکیده
Screen-printed back-to-back microband electroanalytical sensors are applied to the quantification of lead(II) ions for the first time. In this configuration the electrodes are positioned back-to-back with a common electrical connection to the two working electrodes with the counter and reference electrodes for each connected in the same manner as a normal "traditional" screen-printed sensor. Proof-of-concept is demonstrated for the electroanalytical sensing of lead(II) ions utilising square-wave anodic stripping voltammetry where an increase in the electroanalytical sensitivity is observed by a factor of 5 with the back-to-back microband configuration at a fixed lead(II) ion concentration of 5 μg L(-1) utilising a deposition potential and time of -1.2 V and 30 seconds respectively, compared to a conventional (single) microband electrode. The back-to-back microband configuration allows for the sensing of lead(II) ions with a linear range from 5 to 110 μg L(-1) with a limit of detection (based on 3σ) corresponding to 3.7 μg L(-1). The back-to-back microband configuration is demonstrated to quantify the levels of lead(II) ions within drinking water corresponding to a level of 2.8 (±0.3) μg L(-1). Independent validation was performed using ICP-OES with the levels of lead(II) ions found to correspond to 2.5 (±0.1) μg L(-1); the excellent agreement between the two methods validates the electroanalytical procedure for the quantification of lead(II) ions in drinking water. This back-to-back configuration exhibits an excellent validated analytical performance for the determination of lead(II) ions within drinking water at World Health Organisation levels (limited to 10 μg L(-1) within drinking water).
منابع مشابه
Screen-printed back-to-back electroanalytical sensors.
We introduce the concept of screen-printed back-to-back electroanalytical sensors where in this facile and generic approach, screen-printed electrodes are printed back-to-back with a common electrical connection to the two working electrodes with the counter and reference electrodes for each connected in the same manner as a normal "traditional" screen-printed sensor would be. This approach uti...
متن کاملUtilising copper screen-printed electrodes (CuSPE) for the electroanalytical sensing of sulfide.
A mediatorless sulfide electrochemical sensing platform utilising a novel nanocopper-oxide screen-printed electrodes (CuSPE) is reported for the first time. The state-of-the-art screen-printed electrochemical sensors demonstrate their capability to quantify sulfide within both the presence and absence of an array of interferents with good levels of sensitivity and repeatability. The direct sens...
متن کاملThe Mediatorless Electroanalytical Sensing of Sulfide Utilizing Unmodified Graphitic Electrode Materials
The mediatorless electroanalytical sensing of sulfide is explored at a range of commercially available graphitic based electrodes namely, edge and basal plane pyrolytic graphite (EPPGE and BPPGE, respectively), boron-doped diamond (BDDE), glassy carbon (GCE) and screen-printed electrodes (SPE). The electrochemical performance is evaluated in terms of current density/analytical signal and oxidat...
متن کاملForensic electrochemistry: sensing the molecule of murder atropine.
We present the electroanalytical sensing of atropine using disposable and economic screen printed graphite sensors. The electroanalytical determination of atropine is found to be possible over the concentration range of 5 μM to 50 μM with a detection limit of 3.9 μM (based on 3-sigma) found to be possible. We demonstrate proof-of-concept that this approach provides a rapid and inexpensive sensi...
متن کاملDEP-On-Go for Simultaneous Sensing of Multiple Heavy Metals Pollutants in Environmental Samples
We describe a simple and affordable "Disposable electrode printed (DEP)-On-Go" sensing platform for the rapid on-site monitoring of trace heavy metal pollutants in environmental samples for early warning by developing a mobile electrochemical device composed of palm-sized potentiostat and disposable unmodified screen-printed electrode chips. We present the analytical performance of our device f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 140 12 شماره
صفحات -
تاریخ انتشار 2015